PERBANDINGAN METODE COLLABORATIVE FILTERING DAN HYBRID JIANG-CONRATH

Penulis

  • Imam Fahrurrozi Program Studi Komputer dan Sistem Informasi/Departemen Teknik Elektro dan Informatika/Sekolah Vokasi, Universitas Gadjah Mada, Indonesia Penulis
  • Alviska Galuh Nurwana Program Studi Komputer dan Sistem Informasi/Departemen Teknik Elektro dan Informatika/Sekolah Vokasi, Universitas Gadjah Mada, Indonesia Penulis

DOI:

https://doi.org/10.61805/fahma.v17i1.82

Kata Kunci:

recommender system, collaborative filtering, jiang-conrath, combination, cold-start item, sparsity data

Abstrak

Recommender system is a component which has been developed for online commerce purposes. In this issue, one of the popular methods that has been widely used is collaborative filtering. However, this method has some drawbacks and needs to be improved. Therefore, in this research a combination of Collaborative Filtering (CF) and hybrid jiang-conrath method has been compare with original CF, and the result expected reducing some deficiencies on the original collaborative filtering method.

Based on the performance tests, the results conclude that the combination can reduce some weaknesses on the original collaborative filtering, especially on the cold-start item and sparsity issue.

Unduhan

Data unduhan tidak tersedia.

Referensi

Wanarsup, W., Pattamavorakun, Sn., & Pattamavorakun, St., Intelligent Personalization Job Web Site, Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008. SNPD '08, pp. 959 – 964.

Sun, X., & Zhao, W., 2009, Design and Implementation of an E-learning Model Based on WUM Techniques, International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-Government, 2009. EEEE '09., pp. 248n-251.

Liu, X., Jia, S., Liu, E., & Zhang, Z., 2009, Application of Web-based Data Mining in Personalized Online Recruiting System, International Conference on Management and Service Science, 2009. MASS '09, pp. 1-4.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. , 2001, Item-based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th international conference on World Wide Web, pp. 285-295.

Ricci, F., Rokach , L., Shapira, B. & Kantor, B. P., 2010, Recommender Systems Handbook, Springer Science+Business Media, New York.

Shambour, Q. & Lu, J., 2011, A Hybrid Multi-Criteria Semantic-enhanced Collaborative Filtering Approach for Personalized Recommendations, IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology , Vol. 1, pp. 71-78.

Sachan,A.,& Richhariya,V., 2013, " Reduction of Data Sparsity in Collaborative Filtering based on Fuzzy Inference Rules " , International Journal of Advanced Computer Research (IJACR), Volume-3, Issue-10 ,pp.101-107.

Montiel, R.M., & Montes, A.J. F., 2009, Semantically Enhanced Recommender Systems., On the Move to Meaningful Internet Systems: OTM 2009 Workshops Springer Berlin Heidelberg, pp. 604-609.

Jiang,J. & Conrath.,D., 1997, Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings on International Conference on Research in Computational Linguistics, pages 19–33, Taiwan

Adomavicius, G., & Tuzhilin, A., 2005, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, pp. 734-749.

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. , 2007, Collaborative filtering Recommender Systems. , In The adaptive web, Springer Berlin Heidelberg. , pp. 291-324.

Saruladha, K., 2011, Semantic Similarity Measures for Information Retrieval Systems Using Ontology, Thesis, Department Computer Science Pondicherry University, India.

Pedersen T., Pakhomov S. and Patwardhan S.,2007, Masures of Semantic Similarity and Relatedness in the Medical Domain, University of Minnesota Digital Technology Center Research Report DTC 2005/12, Vol. 40, No. 3.

Russell S. and Norvig P., 2003, Artificial intelligence: A Modern Approach 2nd Edition, New Jersey, Prentice Hall.

Ganesan, P., Garcia-Molina, H., & Widom, J., 2003, Exploiting Hierarchical Domain Structure to Compute Similarity, ACM Transactions on Information Systems (TOIS), Vol. 21, No.1, pp.64-93.

Guo, X., & Lu, J., 2005, Recommending Trade Exhibitions by Integrating Semantic Information with Collaborative Filtering, Web Intelligence Proceedings IEEE/WIC/ACM International Conference, pp. 747-750.

Djamal, R. A., Maharani, W., & Kurniati, A.P., 2010, Analisis dan Implementasi Metode Item-Based Clustering Hybrid pada Recommender System, Konferensi Nasional Sistem dan Informatika, pp. 216-222.

Zhang, L., Zhang, X., Chen, Q., Zhu, Z., & Shi, Y. , 2011, Domain-Knowledge Driven Recommendation Method and Its Application, Computational Sciences and Optimization (CSO) IEEE Fourth International Joint Conference, pp. 21-25.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. , 2004, Evaluating Collaborative Filtering Recommender Systems, ACM Transactions on Information Systems (TOIS), Vol 22, No.1,pp. 5-53.

Vozalis, E., & Margaritis, K. G., 2003, Analysis of Recommender Systems Algorithms, Proceedings of the 6th Hellenic European Conference on Computer Mathematics and its Applications , Athens, Greece.

Unduhan

Diterbitkan

31-01-2019

Terbitan

Bagian

Artikel

Cara Mengutip

PERBANDINGAN METODE COLLABORATIVE FILTERING DAN HYBRID JIANG-CONRATH. (2019). Jurnal Informatika Komputer, Bisnis Dan Manajemen, 17(1), 67-76. https://doi.org/10.61805/fahma.v17i1.82

Artikel Serupa

71-79 dari 79

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 3 4 5 6 7 8 9 10 > >>