PEMANFAATAN METODE HEURISTIK TRAVELLING SALESMAN PROBLEM WITH TIME WINDOWS PADA RUTE ANTAR JEMPUT LAUNDRY DENGAN ALGORITMA GENETIKA
DOI:
https://doi.org/10.61805/fahma.v17i1.76Kata Kunci:
Traveling salesman problem, pencarian rute terpendek, antar jemput laundry, time window, algoritma genetikaAbstrak
Laundry business is quite a lot to bring profit, became main attraction of every person to open this business. Needed innovation in order to improve the service can make customer did not move to another. An example is laundry pickup service optimization where each customer has reserved time to deliver and receive their order. Calculation the fastest route is most important part in serving all customers. Another things is traveling salesman problem (TSP) which goal is to choose the shortest path. In this case, the precise arrival time each customer must be considered. The best solution to the problem is achieved by combining chromosomes(solutions) to produce new chromosome using genetic algorithms(Selection, Crossover and Mutation). Looking for the best solution used several combination of crossover and mutation and size, including population size and generation size. From the test result obtained an optimal value is 2000 with the best crossover and mutation probability is 0,4 and 0,6. From parameter value that can give solutions to serve customers with a time window.
Unduhan
Referensi
Gambardella, L. M, Taillard, E., & Agazzi, G. 1999, A Multiple Ant Colony System For Vehicle Routing Problems With Time Windows. New Ideas in Optimization : McGraw-Hill, London.
Suprayogi, Dwi Aries & Mahmudy, WF, Optimasi Rute Antar Jemput Laundry Dengan Time Windows (TSPTW) Menggunakan Algoritma Genetika.
Anita Desiani dan Muhammad Arhami, 2006, Konsep Kecerdasan Buatan, Andi, Yogyakarta.
Mahmudy, F. W. 2013a, Algoritma Evolusi. 2013a.Malang: Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya.
Mahmudy, WF, Marian, RM & Luong, LHS .2014, 'ybrid genetic algorithms for part type selection and machine loading problems with alternative production plans in flexible manufacturing system, ECTI Transactions on Computer and Information Technology (ECTI-CIT), vol. 8, no. 1, pp. 80-93.
Ratna Wati D. A. , 2011, Sistem Kendali Cerdas, Graha Ilmu, Yogyakarta.
Mahmudy, WF, Marian, RM & Luong, LHS. 2013b, Real coded genetic algorithms for solving flexible job-shop scheduling problem – Part II: optimization, Advanced Materials Research, vol. 701, pp. 364-369.
Mahmudy, WF, Marian, RM & Luong, LHS 2012, Solving part type selection and loading problem in flexible manufacturing system using real coded genetic algorithms – Part II: optimization, International Conference on Control, Automation and Robotics, Singapore, 12-14 September 2012, World Academy of Science, Engineering and Technology, pp. 706-710.
Nugraha, Dwi Cahya Astriya & Mahmudy, WF, Optimasi Vehicle Routing Problem With Time Windows Pada Distribusi Katering Menggunakan Algoritma Genetika Fakultas Ilmu Komputer, Universitas Brawijaya.
Damayanti, Chusnah Puteri & Putri, Rekyan Regasari Madi, Implementasi Algoritma Genetika Untuk Penjadwalan Customer Service.
Suprayogi, Dwi Aries & Mahmudy, WF, Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window: Studi Kasus Rute Antar Jemput Laundry.
Sundarningsih, Dita & Mahmudy, WF, Penerapan Algoritma Genetika untuk Optimasi Vehicle Routing Problem with Time Window (VRPTW) Studi Kasus Air Minum Kemasan.
Widodo, Agus Wahyu, & Mahmudy, Wayan Firdaus. (2010), Penerapan algoritma genetika pada sistem rekomendasi wisata kuliner. Kursor, 5(4), 205-211.
Zukhri, Z. (2004), Penyelesaian Masalah Penugasan dengan Algoritma Genetika. Seminar Nasional Aplikasi Teknologi Informasi, 5.
Fachrurrazi, Sayed, Penerapan Algoritma Genetika Dalam Optimasi Pendistribusian Pupuk Di PT Pupuk Iskandar Muda Aceh Utara.